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Figure 1. We train an LLM to decode a frozen CLIP embedding of a natural image into a structured compositional scene representation
encompassing both animals and their habitats.

Abstract

The idea of 3D reconstruction as scene understanding
is foundational in computer vision. Reconstructing 3D
scenes from 2D visual observations requires strong priors
to disambiguate structure. Much work has been focused
on the anthropocentric, which, characterized by smooth
surfaces, coherent normals, and regular edges, allows
for the integration of strong geometric inductive biases.
Here, we consider a more challenging problem where
such assumptions do not hold: the reconstruction of
natural scenes containing trees, bushes, boulders, and
animals. While numerous works have attempted to tackle
the problem of reconstructing animals in the wild, they
have focused solely on the animal, neglecting environ-
mental context. This limits their usefulness for analysis
tasks, as animals exist inherently within the 3D world,
and information is lost when environmental factors are

disregarded. We propose a method to reconstruct natural
scenes from single images. We base our approach on recent
advances leveraging the strong world priors ingrained
in Large Language Models and train an autoregressive
model to decode a CLIP embedding into a structured
compositional scene representation, encompassing both
animals and the wild (RAW). To enable this, we propose
a synthetic dataset comprising one million images and
thousands of assets. Our approach, having been trained
solely on synthetic data, generalizes to the task of recon-
structing animals and their environments in real-world
images. We will release our dataset and code to encourage
future research at https://raw.is.tue.mpg.de/.

1. Introduction
The 3D reconstruction of the physical world from visual ob-
servations plays a fundamental role in computer vision, pro-
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viding the foundation for Marr and Nishihara [56]’s com-
putational model of visual perception. The process cul-
minates in a structured 3D representation of the environ-
ment. Compositional 3D reconstructions of scenes, where
objects are distinguished into semantic classes, are particu-
larly amenable to analysis, enabling editing and simulation.
When such reconstructions are represented in a compact
form that can be used to reproduce the scene, they become
expressive models of 3D reality, supporting applications in
modeling of physical behavior [47].

Recent work has built on developments in Large Lan-
guage Models (LLMs) to reconstruct simple scenes com-
posed of few objects into graphics code [41] or reproduce
architectural layouts of indoor scenes, represented in an ad
hoc scene language [4].

We consider a more challenging problem, the reconstruc-
tion of outdoor natural scenes containing diverse vegeta-
tion and animals. These open settings present unique chal-
lenges: unlike man-made scenes, natural environments are
harder to interpret, as animals often blend into their sur-
roundings with camouflaging colors and patterns; objects
may be positioned at varying distance, some very close and
others very far or under a range of lighting conditions; and
natural scenes can feature complex interactions between el-
ements, such as trees, animals, and other natural objects.
Unlike Avetisyan et al. [4] and similar to Kulits et al. [41],
we reconstruct scenes in graphics code, producing inter-
pretable, editable, and animatable scenes that integrate with
existing graphics assets.

While reconstructing natural scenes is itself an unsolved
computer-vision problem, we are motivated by the goal
of enabling a next-generation computational ethology [2].
Early vision-aided animal-behavior analysis methods relied
on 2D pose observations [64]. However, 2D pose pro-
vides only limited information and, given that the solution is
view-dependent, it is typically only applicable in controlled
environments for problems like animal-gait analysis from
a fixed camera [19]. The transition to 3D reconstruction
of animals represents a natural progression [13, 38, 101],
offering a more comprehensive picture. However, recon-
structing animals in isolation presents limitations for anal-
ysis; for example, studying animal behavior in an empty
volume cannot account for occlusions, physical boundaries,
or natural interactions. Precise environmental context is
useful for understanding animal behavior, yet natural en-
vironments pose challenges for both representation and re-
construction. To date, no work has attempted to concur-
rently reconstruct both 3D animals and their 3D environ-
ment. Instead, research in recent years has largely fo-
cused on creating increasingly detailed 3D representations
of isolated animals. We take a step back, opting instead
to work in a complementary direction: rather than pursu-
ing ever-finer animal representations, we prioritize estimat-

Figure 2. Dataset Samples. Training samples from our synthe-
sized dataset. See the Supp. Mat. for additional visualizations.

ing precise layout of the greater scene context with rela-
tively coarse shape representations, to capture the overall
environment. In this work, we are the first to tackle the
challenge of compositionally reconstructing natural scenes
from monocular images, presenting the first approach
to Reconstruct Animals and the Wild (RAW); see Fig. 1.

Modeling Natural Environments in 3D. The 3D recon-
struction of natural environments from monocular images
presents challenges, stemming both from the fundamental
ill-posedness of inverting 2D images into their originating
3D scenes and from a lack of adequate models for rep-
resenting natural environments. The natural world is no-
tably more complex and varied than anthropocentric en-
vironments with their geometric regularity. Consequently,
modeling natural environments in a manner conducive to
analysis is not straightforward. To address this, we propose
a compositional approach that represents environments as
ordered sets of objects along with various scene-level at-
tributes. This object-based representation is interpretable
and low-dimensional while abstracting away complexity in
a manner that facilitates downstream analysis [89].

Data. Teaching a model to decompose single images of
animals and their natural environments into structured 3D
representations requires broad compositional understand-
ing, yet acquiring suitable training data presents its own
challenges. Because 3D scanning of nature at scale is im-
practical, here we exploit synthetic-data generation. Build-
ing upon tools introduced by the Infinigen project [63],
we design a data generator to construct RAW, a million-
image dataset comprising both synthetic animals and their
environments. Our scenes encompass a diverse range of
elements, including birds, carnivores, herbivores, bushes,
boulders, and trees. See Fig. 2 for samples.

Reconstruction. Our goal is to approximately recon-
struct 3D animals, scene objects, and layout from a single
natural image. To that end, we design a structured graphics-
program representation, or language. Akin to [41], we train
an LLM to decode CLIP [62] image features into graphics
code where objects are represented by their asset names.
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However, when naively training the language model to
produce this sequence, we observe that the model fails to
scale to the expanded asset collection—while capturing the
layout, it often confuses objects with another (e.g., a tiger
with a bush, a bird with a boulder; see Fig. 4). We hypoth-
esize this inconsistency arises due to limitations in train-
time supervision. Built upon a causal LLM, the model op-
erates autoregressively, reconstructing scenes in incremen-
tal chunks (Fig. 1). These discrete units, known as tokens,
represent bits of text. During training, language models typ-
ically are optimized through a cross-entropy next-token ob-
jective, whereby they learn to predict the probabilities of the
subsequent token, conditioned on the preceding ones. Al-
though this discrete text-based representation and supervi-
sion excel in capturing distinct categorical attributes such as
“small,” “purple,” “shiny,” or “cube,” challenges arise when
representing naturally continuous quantities [41].

Asset names, represented as discrete tokens, lack a
meaningful distance metric between one another. This be-
comes problematic when estimating identities across a large
collection of assets, many with only fine-grained differ-
ences in appearance. We hypothesize that, rather than teach-
ing the LLM to infer exact individual assets by name, the
model can be taught to estimate continuous visual appear-
ance, where assets are represented by their CLIP encodings,
and prediction is supervised by a loss in semantic CLIP
space. We do so by adding a unique token, [CLIP], which
signals the LLM hidden state should bypass the discretiz-
ing tokenization process and, instead, be passed through a
linear projection, resulting in a CLIP embedding (Fig. 3).

We observe that with the incorporation of the CLIP-
projection head, the model demonstrates the ability to scale,
estimating objects in scenes featuring much-expanded asset
diversity. Our approach successfully reconstructs animals
and their environments in real images. We will release our
dataset and code to encourage further research in this area.

2. Related Work
Animal Pose and Shape. Many works have attempted
to estimate animal pose and shape from visual observa-
tions, evolving from primitive 2D representations to para-
metric 3D models. Early work by Ramanan et al. [64]
focused on recovering 2D articulated models of animals
from video. The field later progressed to learning 3D
representations, with Cashman and Fitzgibbon [13] devel-
oping a 3D morphable model of a dolphin from images.
Kanazawa et al. [38] extended this idea, additionally learn-
ing to model articulations and pose-dependent deforma-
tions. Zuffi et al. [101] advanced this further by constructing
an articulatable multi-species 3D morphable model from
scans of toy animals, used to recover 3D shape and pose
of quadrupeds [8, 9, 67, 102], while others built morphable
models to estimate the shape of birds [5, 88].

Recent approaches have relatively diverged from a clear
progression. Kanazawa et al. [39] learned to recover 3D
shape and texture of deformable objects from a single im-
age. Sanakoyeu et al. [70] adapted 2D dense pose from hu-
mans to animals and Kulkarni et al. [42] developed canon-
ical surface mappings between articulated objects. Yang
et al. [94] extracted template-free 3D neural models of artic-
ulated objects from video, while Yao et al. [96] and Wu et al.
[90] learned articulated 3D shape models using DINO [12]-
feature-aided part discovery or correspondence. Sharing an
asset-based approach, Wu et al. [91] estimated 3D animal
shape and pose from video by retrieving proximal 3D tem-
plates from a collection of video-game assets and deforming
the templates to align with extracted features.

Inverse-Graphics Approaches. The inverse-graphics
problem – the task of inverting an image into physical vari-
ables that, when rendered, enable reproduction of the ob-
served scene – has a long history, dating back to Larry
Roberts’s Blocks-World thesis [66]. Considerable efforts
have focused on tasks such as estimating object pose [46,
49, 53, 60, 78, 84–86, 92] and reconstructing shape from
single images [16, 25, 30, 57, 59, 75, 87]. However, works
addressing multi-object scenes [21, 28, 73] often neglect
object semantics and relationships, limiting deeper reason-
ing. Holistic 3D-scene understanding aims to reconstruct
individual objects along with scene layout. Initial efforts
centered on 3D bounding boxes [18, 33, 48, 55, 65], with
recent advancements emphasizing finer shape reconstruc-
tion [29, 51, 97]. Relatedly, some methods also involve
retrieving CAD or mesh models, followed by 6-DoF pose
estimation for objects or scenes [3, 6, 24, 31, 36, 37, 43–
45, 50, 69, 81]. In contrast, our work, like IG-LLM [41],
explores the use of LLMs for the inverse-graphics problem,
seeking a possibly simpler and more generalizable solution.

Learning From Synthetic Data in Vision. The use of
synthetic data for training transferable vision models has
proven highly successful in recent years. Applications in-
volve learning to detect objects [80], segment scenes [14],
estimate optical flow [22], predict depth [63], track ob-
jects [100], navigate a robot [20, 68], and estimate human
pose and shape [10, 83]. We further extend this paradigm
by learning to extract transferable compositional 3D scene
representations of natural scenes using procedurally gener-
ated Blender [17] scenes, building off tools introduced by
the Infinigen project [63].

LLMs and 3D Understanding. Recent applications of
LLMs have extended to various 3D-related tasks. These
tasks include 3D question answering [23, 34], planning [34,
52, 98], text-to-3D scene synthesis [35, 77, 95], procedu-
ral model editing [40], multi-modal representation learn-
ing [34, 93], and 3D scene reconstruction from calibrated
RGB-D image sequences [4]. These applications demon-
strate the wide applicability of LLMs to tasks not tradition-
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ally considered text-based. We continue along the line of
IG-LLM [41] and employ an LLM to decode CLIP embed-
dings into structured 3D-scene representations.

3. Method
3.1. Preliminaries
Autoregressive Language Generation. Causal language
models generate text in an autoregressive manner, proceed-
ing chunk by chunk. Each generated chunk, known as a
token, is conditioned on the preceding sequence of gener-
ated chunks. Individual tokens represent bytes or one or
more characters [71]. The models are typically trained with
only a next-token prediction objective [7], conditioned on
the sequence of previously observed tokens:

p(x) =

n∏
i=1

p (si|s1, . . . si−1) (1)

The loss function applied is cross-entropy over the predicted
token probabilities.

Inverse Graphics With LLMs. LLMs are known for
their robust zero-shot generalization capabilities [1, 11, 61],
owing to their scale in parameters and the vast amounts
of data on which they are trained. Departing from tradi-
tional approaches, the success of LLMs to diverse tasks
stems from their training on large and diverse datasets with
a simple objective, followed by fine-tuning on smaller, task-
specific datasets. This contrasts with previous paradigms
that relied heavily on increasing task-specific data for per-
formance improvements.

Motivated by the remarkable generalization ability of
LLMs, IG-LLM [41] treats inverse graphics as LLM-
backed inductive program synthesis. It employs an LLM,
aligns a CLIP [62] vision encoder to its token space as a vi-
sual tokenizer, and finetunes it on simple demonstrations of
images paired with graphics programs, teaching the LLM
to decode CLIP embeddings into structured code represen-
tations that can be used to reproduce the observed scene in
a standard 3D graphics engine. The demonstrations are pro-
duced using procedurally generated images.

Continuous-Parameter Estimation in LLMs. Tokens
are discrete entities, and the cross-entropy loss applied does
not impose any particular ordering. In this loss space, a ‘4’
token is equally distant from a ‘5’ as it is from an ‘8.’ The
discrete nature of tokens makes it difficult to enforce met-
ric supervision. IG-LLM [41] addresses this challenge by
introducing a numeric module for continuous-parameter es-
timation. Rather than passing numbers through the text tok-
enizer, IG-LLM trains the model to produce a special mask
token, [NUM], indicating that the token embedding should
bypass the gradient-breaking token discretization and be
processed by an MLP to produce a continuous, gradient-
preserving parameter estimate. By circumventing tokenizer

discretization, IG-LLM maintains end-to-end differentiabil-
ity, facilitating the use of metric supervision on produced
floats. This adaptation leads to stronger parameter-space
generalization and improved training dynamics. We adopt
a similar approach of using a special token to signal the re-
routing of a token embedding. See Sec. 3.4 for further de-
tails on our design decisions.

3.2. Base Architecture
We adopt the framework established by IG-LLM and base
our architecture on an instruction-tuned version [15]1 of
LLaMA-7b [79], incorporating a frozen CLIP [62] visual
tokenizer2 and applying a learnable linear projection to
link the vision embeddings with the word-embedding space
of the LLM. Following IG-LLM’s coarse vision–language
alignment strategy, we pre-train the projector using image–
caption pairs sourced from the Conceptual Captions dataset
(CC3M) [72]. See also IG-LLM [41] for additional details
on this base setup.

3.3. Data-Generation Setting
We design an image–code training-data generator, building
upon the tooling of the Infinigen project [63]. Infinigen is
a procedural data-generation framework designed to create
realistic 3D Blender [17] scenes of the natural world. The
framework not only generates diverse terrain but produces a
broad range of 3D assets to populate these environments,
including various types of plants, trees, rocks, and crea-
tures. These assets are fully parameterized through mathe-
matical rules. The framework boasts 182 unique procedural
asset generators and 1,070 interpretable parameter degrees
of freedom, in addition to those parameterized by seeds.

The complexity of the scenes is notable, with the authors
reporting an average “wall time” of 4.5 hours to create a sin-
gle image. Although experiments were conducted on 30k
generated images, only ten samples were released, none of
which contain 3D-object ground truth. To effectively model
the real world, data generation must be made scalable.

In its public iteration, Infinigen renders an image from a
single camera location within each scene; the scene is gen-
erated around the camera’s field of view to mitigate unnec-
essary rendering complexity. This setup presents challenges
for randomly placing multiple cameras within the scene ad
hoc, as scenes are designed for a single camera perspective.
To improve efficiency, we implement a number of simplify-
ing modifications, including the following:
• We limit the generated assets to boulders, bushes, trees,

carnivores, herbivores, and birds.
• We pre-generate 1,000 instances of each of the above six

asset types, totaling 6,000 unique assets.

1https://huggingface.co/lmsys/vicuna-7b-v1.3
2https://huggingface.co/openai/clip-vit-large-

patch14-336
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Figure 3. CLIP Head. Rather than teaching the LLM to generate asset names as discrete tokens without a semantically meaningful
distance metric, we train the LLM to produce a special token to signal when the LLM hidden state should be projected into a continuous
CLIP embedding.

• We generate both high-resolution and low-resolution ver-
sions of each asset.

• Within each scene, we sample five instances of each tree,
bush, boulder, or creature from the pre-generated assets.
Unlike in Infinigen proper, where assets are individually
unique, we instance them.

• We populate the entire scene with assets rather than solely
in the area surrounding a single camera viewpoint.

Following our modifications, we generate 100 images in
each of 10,000 distinct scenes, resulting in 1M images. The
scenes are compositional Blender representations.

Only the carnivore, herbivore, and bird assets are na-
tively orientable, that is, have a canonical “front.” The trees,
boulders, and bushes may have very different visual appear-
ances from different angles, such as a left-leaning tree. To
be able to incorporate and estimate this information, we as-
sign labels to each object based on its yaw (rotation around
the vertical axis) relative to the camera. We divide the yaw
into increments of five degrees, resulting in 72 orientations
for each object. This increases the total effective number of
assets to 432,000. In constructing our ground truth, we zero
the yaw of the non-orientable objects local to the camera.

3.4. RAW
In this subsection we define our model objective. We struc-
ture the template as follows:

set_sun_intensity(0.981)
set_sun_elevation(0.691)
set_sun_size(0.811)
set_camera(88.130)
set_atmospheric_density(0.009)
set_ozone(1.499)
set_sun_rotation(231.110)
set_dust(0.169)
set_sun_strength(0.212)
set_air(0.771)

set_ground([CLIP])
add(pixels=1582, loc=(-0.553, -0.809,

-22.591), height=1.365,
rotation=[ROT], appearance=[CLIP])

↪→

↪→

add(pixels=111, loc=(-1.524, -0.939,
-30.159), height=1.224,
rotation=[ROT], appearance=[CLIP])

↪→

↪→

where [ROT] represents a variation of the [NUM] token as
applied in IG-LLM, signaling the token embedding to in-
stead be put through an MLP to regress a nine-parameter
rotation matrix. This choice was primarily motivated by
reducing code dimensionality to enable the use of up to
twenty-five objects per code sequence due to limitations in
LLM token context-length allowance, but we also motivate
it by the result of an evaluation in IG-LLM demonstrat-
ing that employing a continuous representation for rotation
estimation enabled greater parameter-space generalization.
The semantic token, [CLIP], is used to signal whether the
token embedding should be projected to CLIP space with a
linear layer. During training, we set the target of the embed-
ding projector to be that of the rendered asset image at the
given yaw of the scene asset. See Fig. 3 for a visualization.

Scene-level attributes are estimated at the beginning of
the sequence prior to objects. These include sun param-
eters (intensity, elevation, size, strength, and rotation rel-
ative to the camera) and atmospheric conditions (density,
ozone, dust content, and air density). Additionally, a se-
mantic CLIP embedding is estimated to retrieve the ground
texture to texture the resulting scene reconstruction.

Objects are ordered in the objective code sequence by
the number of pixels they occupy: from the visually largest
to the least significant. In this way, the model is taught to
first focus on the most-salient objects before attempting to
explain bushes in the background. See the Supp. Mat. for
a step-wise reconstruction visual, highlighting the ordering
estimated by the model.

5



In
pu

t
IG

-L
L

M
+C

L
IP

Figure 4. Ablation Visualization. We observe that, while both
the discrete-name IG-LLM baseline and the CLIP-estimation vari-
ant well-capture the layout of the in-distribution testing scenes,
the discrete variant makes non-interpretable asset-selection errors.
Rather than consistently matching a tiger with another estimated
tiger asset, the model confuses it with a bush. Similarly, a bird is
mistaken for a boulder. Rather than the errors being semantically
meaningful misinterpretations, the discrete supervision leads to
mistakes that do not make sense. In contrast, the CLIP-estimation
variant consistently identifies objects with aligned interpretations.

3.5. Losses
In addition to the next-token prediction objective loss ap-
plied to the text of the generated code, our use of special to-
kens for rotation and CLIP-appearance estimation enables
and necessitates further supervision. Following Geist et al.
[26], we apply symmetric orthogonalization to our rotation
matrices prior to a mean-squared-error loss. The CLIP-
appearance estimation is supervised by a cosine similarity
loss between the estimated and target embeddings and an
additional regularization term necessary because the simi-
larity loss is vector-norm invariant. See the Supp. Matt. for
further training details.

4. Evaluations
We evaluate the technical contribution of the proposed
method in comparison with the IG-LLM baseline, trained
on the RAW dataset. We begin by measuring the effect
of representing assets as semantic CLIP embeddings in
Sec. 4.2. In Sec. 4.3, we test the effect of conditioning-
memorization on generalization ability. Later, in Sec. 4.4,
we evaluate the effect of introducing additional condition-
ing into the sequence. Finally, in Sec. 4.5, we compare al-
ternatives to CLIP for semantic appearance estimation.

4.1. Metrics
To evaluate our method quantitatively, we use synthetic data
produced using our generator on scenes not observed dur-
ing training. We render the estimated scene representation
and evaluate it with holistic perceptual metrics against the
source image. Prior to visualization, we warp a ground
plane to the estimated object locations using an RBF ker-

↓LPIPS ↑SCLIP ↑SBioCLIP ↑SDINOv2

IG-LLM 0.720 0.748 0.421 0.833
+ CLIP 0.654 0.806 0.537 0.858
+ Fuzz. 0.612 0.807 0.526 0.849
+ Cond. 0.598 0.815 0.539 0.858

Table 1. Quantitative Ablation Effects. We observe that each
added element contributes to overall model performance. SCLIP,
SBioCLIP, and SDINOv2 represent respective cosine similarity be-
tween embeddings of the source and rendered reconstructions.

nel. Central to our evaluation is LPIPS [99], which mea-
sures perceptual similarity between two images – the source
and rendered reconstruction – using features extracted by
VGG [74]. We additionally compute cosine similarity be-
tween the input and reconstruction using CLIP [62], Bio-
CLIP [76], and DINOv2 [58]. However, we de-emphasize
these metrics due to their indirect usage in model ablations
but find they offer a complementary perspective to LPIPS.
See Supp. Mat. for object-wise 3D evaluations and a quan-
titative comparison against YOLOX-6D-Pose [54].

4.2. Discrete Names and Continuous Embeddings
We begin with evaluating the naive discrete-shape-name
version of our pipeline (IG-LLM) trained on our dataset.
In this template, rather than set ground and appearance
being parametrized by [CLIP] tokens and corresponding
embeddings, the assets are named by integers, representing
the scene ID in the case of the ground texture. In this form,
asset identities lack continuity and a meaningful metric be-
tween them. See representative examples in Fig. 4.

We observe that both models estimate scene layout fairly
consistently in-distribution. However, while many of the
assets chosen by both models appear as reasonable approx-
imations, the discrete-name variant has a tendency to con-
fuse assets of similar sizes. Rather than as another instance
of the type of object portrayed, the reconstructions will ref-
erence objects of completely different semantic categories:
a tiger with a bush or a bird with a boulder.

Transitioning to, instead, estimating semantic asset ap-
pearance in the CLIP-estimation variant yields improved re-
sults. Assets are matched semantically, resulting in model
explanations with greater perceptual alignment, effectively
generalizing. We find that this change leads to a jump in
perceptual alignment across metrics as recorded in Tab. 1.

4.3. Value Fuzzing
We then investigate the effect of memorization of condi-
tioning. Producing the graphics-code sequence autoregres-
sively, the model conditions the generation of any token on
all that precede it. In the same way, token generations are
conditioned on the extracted features of the input image. In
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Figure 5. Additional Reconstructions. Additional real-world-generalization samples. Note how we can reconstruct scenes where the
animal is very far or very close to the camera, with severe occlusion, and in different lighting conditions.

the way that causal language models are trained, the context
tokens the model sees are the ground-truth values.

In estimating the value of atmospheric density,
the model should have all the information necessary to
produce the quantity based on only the conditioned-on
image features. However, in practice, if the model
knew that the sun intensity was 0.981, and that the
sun intensity is only ever 0.981 in scene 3,389, it
might be simpler to memorize a table mapping scene iden-
tities to scene attributes. While some token conditioning
is necessary – the model needs to know that it is estimat-
ing atmospheric density and hasn’t already done so
– conditioning on ground-truth scene-level values may hurt
the model’s ability to estimate these values in new scenes. If
the training scenes were unique, and each of the million im-
ages were from distinct scenes, this could not be expected
to be such an issue, but as one hundred images are produced
for each scene, we suspect it may harm the model’s gener-
alization ability.

We hypothesize that adding a small amount of noise, or
“fuzzing” to the target scene-level attributes during training
will force the model to pay more attention to image fea-
tures, and learn to better avoid memorization of scenes. For
each value, we add a uniformly distributed ±0.5% of noise
to each of the scene-level attributes. The magnitude of the
noise added is small enough to not have a noticeable effect
on the values themselves but results in a notable improve-
ment in LPIPS (Tab. 1), supporting our intuition that mem-
orization negatively affects generalization.

4.4. Additional Conditioning
Next, we evaluate the effect of introducing additional value
conditioning to the sequences. The model, when generat-

ing, conditions object predictions off all preceding objects
in the sequence. In the base version, it is able to leverage
positional information (loc) and estimated object height
(height) to determine where in the sequence it is and what
should be produced next. As the objects are ordered in the
objective sequence by the count of their pixels visible in the
source image, the model must be able to reason about – and
disentangle – objects by saliency. It does not have the op-
tion to learn its own ordering, and it must follow along with
the GT sequence during training.

We hypothesize that reasoning about this ordering from
only the list of what came before is difficult for the model to
learn. Motivated by this, we task the model to additionally
estimate the number of pixels visible for each object. In
doing so, it must explicitly model object visibility, and it can
also condition off the information during training to reduce
uncertainty. We evaluate adding pixel count to the sequence
(pixels), and observe quantitative improvement (Tab. 1).

4.5. Choice of Embedding
Finally, we explore the use of alternate embeddings for
appearance estimation, namely DINOv2 [58] and Bio-
CLIP [76], to determine both their efficacy and the LLM’s
ability to estimate them effectively. For clarity, this eval-
uation does not examine the differences in behavior of
alternatives to the CLIP visual tokenizer, which remains
fixed throughout the investigation. DINOv2 is trained with-
out language supervision using a self-supervised learning
objective roughly based on masked-image modeling [32],
and BioCLIP is a fine-tuned version of CLIP trained on
image–label data of taxonomic species from the iNatural-
ist [82] and BIOSCAN-1M [27] databases.

We quantitatively evaluate the variants in terms of the
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↓LPIPS ↑SCLIP ↑SBioCLIP ↑SDINOv2

CLIP 0.598 0.815 0.539 0.858
BioCLIP 0.676 0.795 0.512 0.833
DINOv2 0.597 0.850 0.603 0.865

Table 2. Embedding Choice. On our in-distribution quantitative
evaluation set, we observe that employing DINOv2 features as the
target embedding leads to the strongest performance, while Bio-
CLIP features fare the worst.

earlier evaluation setting. Results can be seen in Tab. 2.
Contrary to our initial speculation, we find that BioCLIP
performs worst as the target embedding across metrics. We
suspect that the finetuning applied in training the model hin-
ders its generalization ability. On the other hand, DINOv2,
which we had originally expected to be less natural to the
model and more difficult to learn, performed best across
metrics. While performing well in-distribution, we observe
that the DINOv2-based model does not effectively general-
ize to real-world images. We suggest that, while the features
may increase the separability of the assets, the space is not
as interpretable to the LLM and it does not learn a general
transform. See the Supp. Mat. for a perceptual evaluation
conducted on real-world images.

5. Limitations and Future Work
While assets produced using Infinigen tooling are paramet-
ricaly defined, reconstructing them solely as code presents
challenges, as they are frequently the result of complex non-
invertible physical processes, including seeded noise op-
erations. Consequently, while the assets may have com-
pact low-dimensional representations, the parameters are
not smooth: small seed changes might result in an object
with dramatically different shape or appearance. Future
work could explore a compromise between retrieval and as-
set generation (predicting some parameters while retrieving
others), rely on differentiable proxies for the non-invertible
steps, or employ models with fully interpretable parameters.

The current creature-articulation system in Infinigen is
non-functional (and, as pictured throughout Raistrick et al.
[63], all creatures are of static pose, many with feet visibly
off the ground). This restricts the expressivity of the data-
generation framework. Future work may involve inferring
full, articulated object pose.

While we observe fairly consistent semantically aligned
reconstruction of real-world environments, our model can
struggle to reconstruct images of scenes with highly out-
of-distribution configurations, such as those in which the
pose of the camera is outside the distribution seen during
training. We suspect that some such generalization issues
might be abated with better layout sampling during data-
generation, but without a more-diverse pool of assets, the

Figure 6. Limitations Samples. Our model can struggle recon-
structing scenes from images with highly out-of-distribution lay-
out or camera pose.

model will not be able to sufficiently explain all aspects of
the scene, such as a vehicle on the road (Fig. 6).

6. Conclusion
Our investigation represents the first compositional recon-
struction of natural scenes that captures both animals and
their natural environments, bridging the gap between recon-
structing animals and the wild.

In summary, we make the following key contributions:
First, we identify and address a fundamental limitation in

scaling scene reconstruction to expansive asset collections.
By teaching an LLM to “name” objects in terms of seman-
tic CLIP appearance rather than as discrete tokens, we over-
come limitations inherent in pure token-based supervision.

Second, we introduce a million-image synthetic dataset
built on tooling introduced in the Infinigen project [63], ad-
dressing data limitations. Despite training exclusively on
this synthetic data, our approach successfully generalizes to
reconstructing natural scenes from single images.

Finally, by enabling comprehensive scene reconstruction
that includes both animals and their environmental context,
we lay the groundwork for a next generation of computa-
tional ethology. This opens new possibilities for automated
interpretation of animal behavior grounded in their habitat.
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